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Abstract. In the course of checking our work on the
symbolic calculation of molecular integrals over Slater
orbitals, we obtained some results in substantial dis-
agreement with two recent articles that describe numer-
ical schemes. We believe that these schemes suffer from
digital erosion, possibly because recurrence formulas
were used outside their regions of stability. Our results
were obtained using the (-function method, which
expands the orbital on one atom onto the other, and
integrates in polar coordinates. They were checked using
elliptic coordinates. Both sets of calculations were
performed symbolically. We summarize these calcula-
tions and discuss the impact of symbolic calculation on
the accuracy of molecular computations.
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1 Background

A recent article in this journal by Oztekin, Yavuz and
Atalay [1] described a new scheme to compute overlap
integrals over Slater orbitals. They addressed the prob-
lem of computing overlap integrals with very high
quantum numbers, for use in expansions of three- and
four-center integrals, and they gave spot values for
overlap integrals over orbitals with quantum numbers as
high as 75. Table 1, below, contrasts the results in their
Table 1 with values that we constructed, for compari-
son, by techniques that use symbolic computation [2].
Agreement is excellent for low quantum numbers, but
deteriorates rapidly. For one integral, we get a value that
rounds to —8 x 1077 compared with a value that
rounds to —5 x 107% in Ref. [1]. The authors of Ref.
[1] computed their results by three different routes. They
state that agreement between their second and third
methods is a measure of the accuracy. It is possible,
however, that

1. These two methods start with the same set of auxiliary
functions and form the same linear combinations, by
different paths, with a precision that achieves consis-
tency whatever the starting values of the auxiliary
functions, and

2. These values were constructed by a recurrence scheme
which accumulates errors.

An earlier, related scheme was reported by Guseinov
and Mamedov [3]. Table 2, below, compares the sample
results in their Table 1 with values from our formulas.
Here, too, there are discrepancies that we ascribe to
digital erosion in the cited work. For conciseness, we
refer to Refs. [1, 3] and to their authors as OYA and
GM, and to the integrals in Tables 1 and 2 as oyaOl—
oya20 and gm01-gm21, respectively. Also, because this
note is largely a commentary on OYA and GM, we do
not repeat many of the references in their bibliographies.

2 The symbolic computations

Our primary approach to the evaluation of Slater
integrals uses the “‘{-function” method. This is based
on the Gegenbauer addition theorem [4], extended and
applied by Coulson and Barnett, separately and jointly,
in several articles that include Refs. [5, 6, 7, 8, 9] prior to
Ref. [2]. Several other authors have explored similar
expansions. The equivalence is discussed in Refs. [10,
11]. The basic {-function formalism is described in Refs.
[5, 6, 8]. We gave general formulas for overlap (and
other) integrals over Slater orbitals in Refs. [2, 7, 8]. The
symbolic calculation of the relevant auxiliary functions
is discussed in Ref. [9] and was applied to all the types of
non-exchange two-center integrals in [2]. The calcula-
tions in the present note follow from Eq. (89) of the
latter paper. They were coded in MATHEMATICA
[12].
We consider the non-zero overlap integrals
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Table 1. Comparison with the results of Oztekin et al. [1]

id n, L, n, Iy m p Overlap integral from [1] Value from our formulas
1 4 2 3 2 1 25 —5.65554 47149 2814 x 107° —5.65554 47149 28136 43477 x 107°
2 15 4 8 4 4 25 2.54324 13255 908 x 1073 2.54324 13255 99050 25346 x 107>
3 18 10 18 17 9 20 —1.14908 69323 4024 x 1072 —1.14908 69466 02953 11841 x 1072
4 25 12 20 17 11 30 4.88129 71401 6814 x 1072 4.88129 74127 09633 67291 x 10-2
5 30 15 29 10 8 50 7.36659 17323 7904 x 1072 7.36627 18636 87158 42865 x 1072
6 34 14 34 12 10 75 1.30016 39359 0254 x 10~ 1.35279 99157 49023 94424 x 10~
7 40 29 40 15 15 15 —6.64155 43654 4458 x 107° —1.19808 92914 94799 80851 x 1077
8 45 29 44 19 17 0.05 —5.10576 63167 5415 x 107* 1.47153 43433 38187 12078 x 1072°
9 48 8 15 3 3 100 1.79326 01304 6145 x 1077 1.79326 01542 13879 83111 x 1077
10 50 15 15 13 11 10 2.90100 70720 5215 x 10~ 2.90100 70720 05887 45053 x 107
11 50 17 25 15 13 10 2.67465 65012 0232 x 1072 2.67465 65009 98301 24907 x 1072
12 50 17 35 17 16 25 —1.22862 34623 0312 x 10" —1.22862 33664 18743 26573 x 107!
13 50 17 50 17 15 5 7.91990 10468 7359 x 107! 7.91990 10468 08083 06681 x 10~
14 55 20 52 23 20 35 —1.78167 72801 6314 x 1072 —2.58332 56897 62251 52663 x 107!
15 60 14 52 17 12 35 —7.50777 78114 6405 x 1072 —2.62097 24834 73092 31335 x 1072
16 62 19 52 17 15 10 3.16515 41484 5183 x 107! 3.16515 41484 60412 40431 x 10~
17 65 24 65 20 18 1x1072  —1.26130 79035 3512 x 107'° 2.95052 48866 02063 27282 x 10~
18 70 15 65 13 10 1x107* 3.35027 78817 9863 x 107! 3.34993 30690 23695 02366 x 107!
19 70 25 70 15 14 25 3.65666 73244 8635 x 1073 —3.46058 31366 47395 18445 x 107°
20 75 30 75 20 18 1x 107  —4.92600 26460 7547 x 107 —8.19297 54962 16878 82025 x 10778

Table 2. Comparison with results of Guseinov and Mamedov [3]

Overlap integral from [3,13]

Value from our formulas

id ng, 1, n I, m P t
1 3 2 3 2 1 25 0.6
2 4 2 4 3 1 80 0.4
3 5 4 5 4 4 100 0.7
4 7 3 4 3 2 150 0.7
5 9 5 8 4 3 45 0.2
6 10 7 8 2 1 60 0.2
7 10 9 10 9 9 15 0.6
8 13 12 13 12 12 25 0.01
9 14 13 14 13 13 15 0.4
10 15 14 15 14 14 15 0
11 16 15 16 15 15 35 0
12 17 8 8 7 4 50 0.1
13 17 16 17 16 16 25 -0.5
14 18 12 18 12 12 20 -0.6
15 21 10 9 8 6 45 0
16 27 8 9 8 7 35 -0.2
17 30 10 14 10 8 35 0
18 37 8 12 10 6 10 -0.6
19 40 4 12 4 3 15 0.6
20 43 10 18 8 6 60 -0.4
21 50 4 50 4 4 25 0.7

—4.42287 76698 8261 x 107
4.03505 95032 6382 x 10717
1.56200 59915 3976 x 10714

—-1.76861 05069 7887 x 107'8

—5.46510 24302 2867 x 1078

—1.84189 02617 3558 x 10710
6.23122 31819 6866 x 107*
1.35310 56039 2189 x 107*
4.53551 31215 6525 x 1073
3.74722 49703 8009 x 1072
1.21686 56225 3236 x 107°

—1.00640 06135 4258 x 10~°
3.06769 56518 5575 x 107°
6.63931 81365 1240 x 107>
5.38980 68535 0612 x 107>

—1.73300 98279 9699 x 10~
1.35074 70959 2800 x 1072
3.98219 84900 4259 x 1074
9.48379 26559 9810 x 1072

—-1.15907 68712 3104 x 107™*
1.84395 90103 7228 x 10712

—4.42287 76698 82608 80679 x 107
4.03505 95032 63822 98108 x 1077
1.56200 60274 57891 03745 x 1071

—1.76861 05069 22648 59080 x 10~'8

—5.46510 24302 27040 17382 x 1078

—1.84189 02617 31981 06424 x 1071°
6.23122 31819 11249 46475 x 10~
1.35310 57870 24712 38186 x 107*
4.53551 28510 67909 11552 x 107>
3.74722 49703 81891 95430 x 1072
1.21686 52185 90198 18856 x 107°

—1.00640 06411 71881 72346 x 10~°
3.06770 32557 90193 60938 x 107>
6.63931 81369 66506 77513 x 107>
5.38980 68533 81437 73017 x 107>

—1.74423 80751 96959 09193 x 10~
1.35074 70959 32433 38875 x 1072
3.98228 00437 70915 73596 x 107'*
9.48379 22083 22556 78538 x 1072

—1.15825 65326 71748 14660 x 10~
1.84395 87993 24363 40310 x 1072

containing the real orbitals
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The subscript s specifies the atomic center. The polar
axes of the (v, 0,, ¢,) and (rp, 05, ¢,,) coordinate systems
are colinear and point in the direction AB. The azimuthal
planes coincide. Nucleus B has coordinates (p,0,0) in
the (r,, 04, ¢,) system. The index o takes values —1 and 1
for cosm¢, and sinme¢,, respectively. The normalizing
factor A" is

The integral in Eq. (1) is zero if m, # my, or if 6, # 0, Or
if my=mp,=0 and o, =0, =1. For the non-zero
integrals we write m, = my = m, 6, = o, = 6. The value
of the integral does not depend on ¢ when m > 0.
Although these integrals depend ostensibly on the
two screening constants (k,, k) and the inter-nuclear



separation p, they can be written as functions of the two
variables x = k,/k, and © = kyp, or the equivalent ¢ =
(ke — kb)/(ky + k) and p = p(k, + ks)/2. Shortly before
OYA was published, we constructed a table of formulas
for the individual overlap integrals with (n,,n;) < 8. For
equal screening constants, these formulas depend on the
single variable p. For example, the (4d,., 3d,.) integral
that is particularized in oya0l is given by

e

—p
210\/ﬁ(

735+ 735p 4+ 255p” + 10p* — 20p* — 7p° — p°)

(4)
To check the other integrals in OYA, we assigned the
appropriate numerical values to p as well as to the
quantum numbers of the concomitant orbitals, before
starting the process to reduce the general expression for
an overlap integral symbolically. The result for oya02 is
typical.

1474 29590 74464 50752 82029 15877 &> 5)
10 25623 22267 30490616 16126

Any overlap integral with equal screening constants can
be reduced to the form

NG (6)

where a is a polynomial in p with integer coefficients,
and b and ¢ are integers. For oya20, p is the rational
1 x 107°, and the numerical values of @, » and ¢ contain
965, 1037 and 8 digits, respectively.

For unequal screening constants, too, we use tables of
formulas for (n,,n,) < 8. Thus, the (3d,, 3d.,) integral
that is particularized by gm0O1 is given by

— 1287/
(K2 —1)775
x {ic(—11520 — 115207 + 480(x* — 11)7°
+ 480(x* — 3)7* + 240(x* — 1)7*
— (1% =17 (12 +23)7° + (1 = 1) )e
+ (70 4 23k 4+ x77% — 31°1*(—80 + %)
— 451403 (17 — 32) + 3P (vF — 8077 + 1760)
+ 311(7t* — 1607° + 3840)
—k(1° 4 4807* — 11520))e "} (7)

For (n,,np,) > 8, we assigned values to (x, 1) or (p, ) and
then performed the computation. This led, for example,
to the following expression for the integral gmO06
(na=10,1,=7,n,=8,1, =2,m=1,p=60,t =1/5).
75 58272
3 81851 19628 90625+/33915
x (28 79825 09811 37028 95638 78731 e ?

—120 24494 41944 08965 88195 ¢ ) (8)

Any overlap integral with unequal screening parameters
can be reduced to the form
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Kv1+1/2(ae—r +be—KT)
C\/E(KZ —1)7"

where (v, vz, v3,c,d) are integers, and (a, b) are polyno-
mials in (%, 7) with integer coefficients.

When referring to Table 1 of GM, it should be noted
that the values of /', the angular quantum number of the
orbital on nucleus B, were omitted from their published
work. The column that is headed /' in Ref. [3] actually
contains the values of the quantum number m. Also,
since publishing their paper, the authors have amended
the values of gm04 (in sign), gml1 (in the 3rd digit),
gml2 (in the 5th digit) and gm18 (from order 10~' to
order 10~'%) [13]. While we get 15-digit agreement with a
few of their results, mismatch still occurs as high as the
3rd digit amongst the others.

©)

3 Checking our formulas

A detailed account of our process that applies the
{-function method to the tabulation of formulas for
overlap integrals is in preparation [14]. Its development
has included an exploration of the use of computer
algebra to optimize both symbolic and numeric compu-
tations. The relative simplicity of the overlap integrals
facilitated this study. It has provided results that we will
use in further work on molecular integrals of greater
complexity and related problems.

However, even when dealing with objects as simple as
the overlap integrals by computer algebra, checking is
essential — hence our interest in a diversity of numerical
results of other authors and, where possible, formulas
from other sources. Very early in our use of MATH-
EMATICA for this work, we tried to regenerate a table
of formulas for two-center one-particle integrals that
Coulson derived manually [15]. These did not have a
uniform structure and, in consequence, we could not
design an algorithm to generate the expressions that he
published. The manual transformation of our immediate
results to the formulas in [16] was tedious and error
prone. This showed the need for interactive resources to
fine tune formulas produced by computer algebra, which
led us to develop the ‘“‘hierarchical addressing” scheme
in the suite of MATHEMATICA procedures that we
call MATHSCAPE [16, 17]. As mentioned in Ref. [2],
this let us produce results that matched those in Ref. [16]
precisely, except for two of the expressions. Further
checking confirmed our formulas throughout. Numeri-
cally, we verified some results of Kennedy and Zhao [18],
using other formulas which we had tabulated [9]. Also,
we calculated spot values for all the Coulomb integrals
containing K and L shell orbitals, from appropriate
formulas, which matched the values which we computed
numerically using the programs of Rico et al. [19]. This
was reported in Ref. [2].

When using the values in GM to check our overlap
integral formulas, we repeated each asymmetric case
with the orbitals interchanged, and we recalculated gm03
using elliptic coordinates. This confirmed our expression
of the form of Eq. (9). In principle, the test does not
exclude possible errors in the exponential and square



244

root functions, or in the manipulation of the specific
very long integers that are involved. Because errors have
occurred for exceptional arguments historically, e.g. in
square roots on the EDSAC computer [20], in e~ on the
ATLAS computer [21], and in division on the PEN-
TIUM chip [22], we ran further checks. These excluded
such errors as the cause of discrepancy here.

After recalculating the OYA integrals using the
{-function procedures, we repeated the calculations in
elliptic coordinates, using simple coding. The integrands
were converted to the (4, 4, ¢) coordinate system using
the basic formulas in [15]. The integrands were expanded
and the integrations were distributed using elementary
MATHSCAPE and built-in MATHEMATICA func-
tions. Then the built-in Integrate function was used to
work outwards through the integrations over ¢, u and 4
in succession. The function was used for expediency, and
its use was inefficient computationally. However, it had
the advantage of avoiding any commonality with the
{-function calculation, as regards intermediary mathe-
matical functions, except for exponentials, square roots
and the normalizing factors in the final conversion to
numerical form. We have now run corresponding checks
on all the GM integrals, confirming the results that we
obtained using (-functions. We will try to develop faster
procedures using elliptic coordinates in due course.

4 Simplified calculations

We are exploring the construction of bounds and
asymptotic formulas, using the fact that r"e™" peaks
very sharply at r=n for high quantum numbers.
The approximation exp(—rp) = exp(—r,) x exp(pcosl,
—p?sin? 0,/2r,) worked well in some preliminary tests
for integrals containing s orbitals. For (21s, 1s) at p = 1,
we expanded the second exponential about the origin,
and took the first three terms. This gave 0.00002 42095
32395 27782 17497 for the integral, which differs by 3
units in the rightmost digit from the value found from
the precise formula. Attempts to use this approach for
high angular quantum numbers have not succeeded, so
far. Maslov and Niukkanen have reported an approach
to the computation of molecular integrals [24] that may
help in this regard.

5 Explaining the discrepancies

Calculations that take differences of relatively large
quantities may be a source of error in both OYA and
GM. Neither work addresses the issue. The differencing
problem is discussed in relation to the evaluation of
molecular integrals by Jones [23]. He advocates using the
unrestricted precision arithmetic resources of computer
algebra systems when performing molecular calcula-
tions. Other authors also take this view. Weniger, Cizek
and Vinette [25] used 1000-digit precision arithmetic in
studies of high order anharmonic oscillators. We use
rational arithmetic throughout our molecular integrals
work, and we used rational arithmetic and 100-digit
floating—point arithmetic in a study of parameterized

secular equations [26]. Also, at one point in the
molecular integrals studies, symbolic calculation re-
moved paired terms of identical magnitude and oppo-
site sign that had dominated the prior piecewise
numerical computation of certain auxiliary functions
[9]. Working in a symbolic computation environment
facilitates the monitoring of digital erosion [26]. Also it
helps in the mechanical production of reports and
papers by techniques that avoid any manual transcrip-
tion. This issue is discussed in Ref. [2]. As well as
converting the direct results of our MATHSCAPE
sessions to LaTeX mechanically [27], we now convert
the encoded formulas back to symbolic and numerical
forms, to ensure that no errors were introduced in the
coding.

Both OYA and GM stress their use of recurrence
schemes. Such schemes provide fertile ground for digital
erosion. The standard literature of numerical analysis
cautions against the indiscriminate use of recurrence
formulas (see, e.g., page 21 of Ref. [28], page 25 of Ref.
[29]). The accounts of rigorous numerical tabulations of
mathematical functions state the region of stability of
each formula that is used (see, e.g., [30]). We discussed
this issue in connection with the evaluation of molecular
integrals half a century ago in the comments accompa-
nying Eq. (35f) on page 329 of Ref. [6]. Antolovi¢ and
Delhalle [31], Weniger and Steinborn [32], Bhattacharya
and Dhabal [33], Li, Dong and Pan [34], Sébilleau [35]
and other authors have also discussed the numerical
stability of the functions that are used to compute mo-
lecular integrals, too. Neither OYA nor GM, however,
give detailed, explicit attention to this topic.

The discrepancies that are noted in Tables 1 and 2
reflect a more general problem that affects computa-
tional science. The recency of the field has not yet
allowed the accumulation and systematization of expe-
rience comparable to the experimental lore of traditional
scientific research. Often, numbers are accepted unless
they are in conspicuous violation of physical principles
because there is no real alternative. Numerical analysis
is a well established field and has an extensive literature
that deals with error bounds, but many scientific com-
putations are reported without any attention to this.
Symbolic computation offers new ways to check, but it
is not a simple panacea. We have found it to be fraught
with error, too. For example, when streamlining part of
our overlap integral calculation recently, we generated a
set of results that showed consistency in the differenti-
ation check that raises n, and n,, but that were com-
pletely wrong. The expressions had been reconstructed,
consistently, as linear combinations of a damaged file of
Gaunt coefficients. Another test, which checked the limit
p — 0, detected the error. Numerical and symbolic
calculations, however, do provide powerful cross checks
on each other and, if used cautiously, can be combined
to give greater accuracy and confidence in theoretical
research.
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